ژانویه 19, 2021

سايت مقالات فارسی – تحلیل چند متغیره تابع چندکی و کاربردهای آن- قسمت ۱۰

3 min read

۷-۳-۲- شبیه سازی منحنی مقیاس توزیع نرمال دو متغیره
۲۰۰ داده از توزیع نرمال دو متغیره استاندارد (۰,I)N و ۲۰۰ داده از توزیع نرمال دو متغیره (۰,۲I)N تولید کرده ایم. شکل ۷-۹ منحنی مقیاس(۰,I)N توزیع نرمال دو متغیره و شکل ۷-۱۰ منحنی مقیاس توزیع نرمال دو متغیره (۰,۲I)N را نشان می دهند.
شکل (۷-۹): منحنی مقیاس توزیع نرمال دو متغیره (۰,I)N
شکل (۷-۱۰): منحنی مقیاس توزیع نرمال دو متغیره (۰,۲I)N
منابع و مآخذ
[۱] Abdous, B. and R. Theodorescu (1992), Note on the spatial quantile of a random vector, Statistics and Probability Letters 13, 333–۳۳۶٫
[۲] Beirlant, J., D. M. Mason and C. Vynckier (1999) , Goodness-of-fit analysis for multivariate normality based on generalized quantiles, Computational Statistics & Data Analysis30, 119–۱۴۲٫
[۳] Brown, B. M. and T. P. Hettmansperger (1987), Affine invariant rank methods in the bivariate location model, Journal of the Royal Statistical Society, Series B 49, 301–۳۱۰٫
[۴] Brown, B. M. and T. P. Hettmansperger (1989), An affine invariant bivariate version of the sign test, Journal of the Royal Statistical Society, Series B 51, 117–۱۲۵٫
[۵] Chaudhuri, P. (1996), On a geometric notion of quantiles for multivariate data, Journal of the American Statistical Association 91, 862–۸۷۲٫
[۶] Deheuvels, P., J. H. J. Einmahl, D. M. Mason and F. H. Ruymgaart (1988), The almost sure behavior of maximal and minimal multivariate kn-spacings, Journal of Multivariate Analysis 24, 155–۱۷۶
[۷] Dibucchianico, A., J. H. J. Einmahl and N. A. Mushkudiani (2001), Smallest nonparametric tolerance regions, Annals of Statistics 29, to appear.
[۸] Donoho, D. L. and M. Gasko (1992), Breakdown properties of location estimates based on half-space depth and projected outlyingness, Annals of Statistics 20, 1803–۱۸۲۷٫
[۹] Dumbgen, L. (1992), Limit theorems for the simplicial depth,0 Statistics and Probability Letters 14, 119–۱۲۸٫
[۱۰] Einmahl, J. H. J. and D. M. Mason (1992), Generalized quantile processes, Annals of Statistics 20, 1062–۱۰۷۸٫
[۱۱] Ferguson, T. S. (1967), Mathematical statistics: a decision theoretic approach, Academic Press, New York.
[۱۲] He, X. and G. Wang (1997), Convergence of depth contours for multivariate datasets, Annals of Statistics 25, 495–۵۰۴٫
[۱۳] Hettmansperger, T. P. and J. W. Mckean (1998), Robust nonparametric statistical methods, Arnold, London.
[۱۴] Hettmansperger, T. P., J. Nyblom and H. Oja (1992), On multivariate notions of sign and rank, in: Y. Dodge (ed.), L1-Statistical analysis and related methods, North-Holland , Amsterdam , 267–۲۷۸٫
[۱۵] Kemperman, J. H. B. (1987), The median of a finite measure on a Banach space, in: Y.Dodge (ed.), Statistical data analysis based on the L1-norm and related methods, North Holland, Amsterdam, 217–۲۳۰٫
[۱۶] Koenker, R. and G. Bassett (1978), Regression quantiles, Journal of the American Statistical Association 82, 851–۸۵۷٫
[۱۷] Koltchinskii, V. and R. M. Dudley (1996), On spatial quantiles, unpublished manuscript.
[۱۸] Koltchinskii, V. (1997), M-estimation, convexity and quantiles, Annals of Statistics 25,435–۴۷۷٫
[۱۹] Liu, R. Y., J. M. Parelius and K. Singh (1999), Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion), Annals of Statistics 27,783–۸۵۸٫
[۲۰] Lorenz, M. O. (1905), Methods of measuring the concentration of wealth, Publication of the American Statistical Association 9, 209– ۲۱۹٫
[۲۱] Masse´, J.-C. (2000), Asymptotics for the Tukey depth process. Application to a multivariate trimmed mean, Preprint.
[۲۲] Masse´, J.-C. (2001), Asymptotics for the Tukey depth-based trimmed means, Preprint.
[۲۳] Masse´, J.-C. and R. Theodoresce (1994), Halfpane trimming for bivariate distributions, Journal of Multivariate Analysis 48, 188–۲۰۲٫
[۲۴] Mushkudiani, N. (2000), Statistical applications of generalized quantiles: nonparametric tolerance regions and P-P plots, Eindhoven University of Technology, Eindhoven.
[۲۵] Mushkudiani, N. (2001), Small nonparametric tolerance regions for directional data, Journal of Statistical Planning and Inference, to appear.
[۲۶] Nolan, D. (1992), Asymptotics for multivariate trimming, Stochastic Processes and Applications 42, 157–۱۶۹٫
[۲۷] Oja, H. (1983), Descriptive statistics for multivariate distributions, Statistics and Probability Letters 1, 327–۳۳۲٫
[۲۸] Polonik, W. (1999), Concentration and goodness-of-fit in higher dimensions: (asymptotically) distribution-free methods, Annals of Statistics 27, 1210–۱۲۲۹٫

  • [۲۹] Robert Serfling (2002), Quantile functions for multivariate Analysis: approaches and applications Journal of statisticaneerlandica , (Vol.56,nr.2,pp.214-232)

[۳۰] SrflIing, R. (2001), Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis, Journal of Multivariate Analysis, in press.
[۳۱] Small, C. G. (1987), Measures of centrality for multivariate and directional distributions, Canadian Journal of Statistics 15, 31–۳۹٫
[۳۲] Small, C. G. (1990), A survey of multidimensional medians, International Statistical Review58, 263–۲۷۷٫
[۳۳] Zuo, Y., H. Cui and X. He (2001), On the Stahel–Donoho estimator and depth weighted means of multivariate data, Preprint.
[۳۴] Zuo, Y. and R. Serfling (2000a), General notions of statistical depth function, Annals of Statistics 28, 461–۴۸۲٫

Copyright © All rights reserved. | Newsphere by AF themes.